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e Motivation: neutralinos in the MSSM
 Radiation amplitude zeros (RAZ)

e Observing supersymmetric RAZ at the LHC



Motivation

* The neutralino sector of N s I
the Minimal KoK X3 Ky

Supersymmetric |

Standard Model has a |
rich phenomenology

that 1s largely

dependent on the

mixing of the gaugino Y.Z,h h,
and Higgsino

eigenstates




Motivation

e As the LHC makes more neutralinos, 1t will
become important to know their properties

 While specific breaking scenarios predict various
mixing arrangements for the neutralinos, bottom-
up approaches to determining their content are few

and far between (Kane et al., 1105.3742; Allanach et al.,
1010.4261; Tata, talk on Sunday)

 How to untangle neutralino mixing in a model-
independent fashion?



Radiation Amplitude Zeros

e Vanishing amplitudes 1n specific regions of phase
space for processes with external gauge bosons

e RAZ were first seen, unexpectedly, in the
calculation of d u— W 'y production
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We suggest that the reactions pp —'Win and pp —'Wi'yX are good candidates for meas-
uring the magnetic moment parameter « in py = (e/2My) (1 +k). The angular distribution
of the W bosons in pp —~W X is particularly sensitive to this parameter. For the gauge—
theory value of k = 1, we have found a peculiar zero in do(diZ—~W™y)/d cos6 at cosf = -3,
the location of this zero depending on the quark charge through cosﬂ =~(1 +2Qd} A Slm—

ilar zero oceurs in do(xd—~W+y)/d cosf., We can ‘oﬁer no explanation for this behavior.




Radiation Amplitude Zeros

e This amplitude zero
has been studied at the

Tevatron

e Presence of t
1
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Why do RAZ happen?

e Diagrams for processes with external photons can be
thought of as arising from attaching photons to a
stmpler diagram 1n all possible places

* Adding a photon introduces a factor to a diagram
which only depends on the spin structure, charges,
and momenta




Why do RAZ happen?

* In specific regions of phase space, this extra factor
vanishes since it corresponds to a Lorentz
transformation (Brown, Kowalski, Brodsky)

e For 2-2 scattering with a photon in the final state,
the kinematic region with an amplitude zero 1s

Ql_Qz
0, +0,

given by cos0=

2
Qa_ 3

1
e e.g. for Wy production, we have Q,=— 3



Why do RAZ happen?

 Amplitude zeros also happen for processes with
external gauge bosons other than photons

81 82
81178,

cosO=

* For massive gauge bosons, RAZ are only
approximate, because of production of
longitudinally polarized bosons

¢ ¢.2.9,9,— W Z production (Baur, Han, Ohnemus)



RAZ in Supersymmetry

e Given the zero in Wy production, it's natural to
expect a zero in chargino-neutralino production

e But the existence of a RAZ here depends on the
neutralino composition! (need RAZ at cos0<1)

W o+

B No physical RAZ No tree level diagrams
w? RAZ at cos0* =0 No tree level diagrams

H, o | No tree level diagrams No physical RAZ




RAZ in Supersymmetry

e There 1s no amplitude zero in chargino-neutralino
production except when the neutralino 1s a wino, so
we can use the presence of a RAZ to probe the
wino content of the neutralino

 We now turn to methodsO of observing the zero
experimentally in X | X ,—3{+MET

« Clean signal (WZ background), can't do with X1 %

e We assume 1 ab™ of LHC data at 14 TeV: not for
discovery but exploration after SUSY 1s found



Turning to Trileptons

: ' SPS4 (MadGraph 4
e Consider chargino- 10° - ( i ) —
X1 X2 X1 X1

neutralino production
with trilepton decay > w}

RAZ no RAZ

G

e When the neutralino 1s \?
wino-like, we expect £
fewer events at low
cosO because of the
amplitude zero, and
hence a lower number
of high-p_leptons
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Turning to Trileptons
 We choose to look at the sottest lepton p_, seeing

how many trilepton events from chargino-
neutralino production remained as the minimum
lepton p,_ was increased

e To calibrate how fast the number of events drops
with increasing p_ cut, we compare to a process

that never exhibits an amplitude zero, chargino pair
production N(% " +% —21+MET)
R23 ( pT) N ., 0 =)
N(% | +%,—3l+MET)




N(%|+%,—>21+MET)
R23(pT): < L
e Events without ISR, N(% 1 +%2—31+MET)
FSR, or fragmentation SPS4  SPS9  (Pythia 6)

(negligible effect)

e Require that leptons
have rapidity < 2.5

e A1s chargino-LSP mass
splitting

e Ratio rises with
increasing cut when
neutralino 1s wino-like




A Potential Problem?

 When the chargino-LSP mass splitting 1s much
greater than the neutralino-LSP mass splitting, R

compares the spectra of leptons that are generally
coming from different decays

e To account for different possible SUSY spectra,
we also construct an analogous ratio comparing
chargino-neutralino associated production to

neutralino pair production
N(%5+%>—41+MET)
R, (]? T) =

N(%T+%,—31+MET)




N(%5+%>—41+MET)
R43(PT): 0
%

N(%|+%,—3l+MET)

. R23 and R43 complement SPS4 SPS9 (Pythia 6)

each other

e For a wino-like
neutralino, both ratios
i s o<
tend to rise sharply with
increasing leptonic
fransverse momentum
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Investigating Neutralino Mixing

e The more leptons there
are 1n the final state, N(% " +5% T —>21+MET)
the more events a R (pr)= N(% T +% 931+ MET)
fransverse momentum
cut removes

N(%5+%2—41+MET)
T+% 531+ MET)

e LOWR — lowIN |
23 D)

. ~ 0
sz = wino content of X ,

. High R_ — high IN |



Using the pMSSM

e To test our techniques, we applied them to the
results of a previous scan of the phenomenological
MSSM, which imposes only those constraints on the
full MSSM parameter space that are experimentally
motivated, e.g. minimal flavor violation

e This large set of pMSSM models contains a wide
variety of neutralino mixing schemes, providing an
1deal testing ground for our method

e For more details, see Berger et al., arXiv:0812.0980



Using the pMSSM

50GeV<=IM ,u<1TeV

100 GeV SM3 < ANl

1 <tan B <50
43.5GeV<m <1TeV

100 GeV < mfs 1 TeV

A I<1TeV

e After applying many
theoretical and
experimental
constraints, ~70000

models that were still
viable before the LHC

* Here, we only consider
models with chargino-
LSP mass splittings

above 50 GeV (~16%)

o



Results from the pMSSM

e Only use models that
should have sufficient

statistics with 1 ab™
(~4400) at LHC-14

e Within our model set,
the 90% upper limits on
the wino content of the
second neutralino are
indicated by the shaded o I
region
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Results from the pMSSM

* Second neutralino tends
to be heavier than
lightest chargino in the
model set, so only

~1200 models for
looking at R |

e R and R are usetful
23 43

for setting upper and
lower bounds on the
wino-ness of the second
neutralino, respectively
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Summary

e Radiation amplitude zeros, having previously been
used to test the Standard Model, show promise 1n
probing the coupling structure of supersymmetry

e Looking at the potential effects of a RAZ in
associated chargino-neutralino production, we have
demonstrated the power of a technique to
investigate the neutralino mixing matrix

e As the LHC ramps up, RAZ should prove useful
once again in testing SUSY gauge theory

o
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